SHIVAJI UNIVERSITY KOLHAPUR.

Estd 1962
NAAC 'A' Grade
Syllabus For
Bachelor of Commerce
B.Com. Part-I
CBCS Pattern
Sem-I & Sem-II

Introduced from June 2018 and Onwards

(Subject to the modifications will be made from time to time)

B.Com. Part- I Semester – I (CBCS Pattern) Business Mathematics Paper-I

(Algebra And Commercial Arithmetic)

Generic Elective Course

To be implemented from June - 2018

Unit	Title of the unit	No. of
No.	Duagnagian	Lectures
1	Progression	15
	1.1 Introduction.	
	1.2 Definition: Sequence, Arithmetic Progression	
	(A.P.).	
	1.3 General term (n th term) of an A.P., Sum of the	
	first 'n' terms of an A. P. and simple examples.	
	1.3.1 Examples based on the application of	
	Arithmetic Progression to Business.	
	1.4 Definition : Geometric Progression (G.P.).	
	1.5 General term (n th term) of an G.P., Sum of the	
	first 'n' terms of an G. P. and simple examples.	
	1.5.1 Examples based on the application of	
	Geometric Progression to Business.	
2	Matrices and Determinants	15
	2.1 Introduction.	
	2.2 Definition of Matrix	
	2.3 Types of matrices: Rectangular matrix, Row	
	matrix, Column matrix, Square matrix, Diagonal	

	matrix, Scalar matrix, Unit matrix(Identity matrix),	
	Upper triangular matrix, Lower triangular matrix,	
	Null matrix (Zero matrix).	
	2.4 Algebra of matrices : Equality of matrices,	
	Addition and Subtraction of matrices. Scalar	
	multiplication of a matrix, Multiplication of	
	matrices Transpose of a matrix and examples.	
	2.5 Minor, cofactor, Adjoint, Inverse of a square	
	matrix. Finding inverse of a matrix by using adjoint	
	method.	
	2.6 Determinants of second and third order.	
	Determinant of a square matrix, Singular and non –	
	singular matrix. Properties of determinants	
	(without proof), Examples.	
	2.6.1 Cramer's rule, Solution of system of linear	
	equations by cramer's rule.	
3	Ratio, Proportion, Percentage and Interest	15
	3.1 Introduction.	
	3.2 Ratio and Proportion.	
	3.2.1 Simple and compound proportion.	
	3.2.2 Simple examples on ratio and proportion.	
	3.3 Percentage, simple examples.	
	3.4 Interest: Simple Interest, Compound Interest	
	3.4.1 Simple examples based on simple and	
	compound interest.	

	3.5 Annuity: Types of annuity, Present value of an	
	annuity, Future value of an annuity. Examples	
4	Linear Programming Problems (L. P. P.)	15
	4.1 Introduction.	
	4.2 Definition: Linear Programming, Objective	
	function, Decision variables, Constraints.	
	4.3 Formulation of L.P.P (Two variables only)	
	4.4 Definition: Solution to L.P.P., Feasible	
	solution, optimal solution.	
	4.5 Solution of L.P.P. by graphical method.	
	(cases having no solution, multiple solutions,	
	unbounded solution) Examples.	

*** (1) Non – programmable calculator is allowed.

Reference Books

- 1) **Comprehensive Business Mathematics**, Venna G. R., New Age International (P) Limited Publishers, New Delhi.
- 2) **Text Book of Matrices**, Shantinarayan.
- 3) Business Mathematics, . Kumbhojkar G. V.
- 4) Business Mathematics, Soni R. S.
- 5) Business Mathematics, Kapoor V. K., Sancheti D. C.
- 6) **Operation Research,** J. K. Sharma.
- 7) **Business Mathematics**, B.Com. Part I Published by Shivaji University, Kolhapur.

B.Com. Part- I Semester – II (CBCS Pattern) Business Mathematics Paper-II

(Calculus)

Generic Elective Course

Unit	Title of the unit	No. of
No. 1	Functions Of Real Variables	Lectures 15
	1.1 Introduction.	
	1.2 Linear, Quadratic, Exponential ($y = a^x$),	
	Inverse functions and their graphs. Illustrative	
	examples.	
	1.3 Limit of Function.	
	1.3.1 Definition of Limit, Standard limits.	
	1.3.2 Algebra of limits: If $f(x)$ and $g(x)$ are two	
	functions of x and k is any scalar, then	
	(i) $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$.	
	(ii) $\lim_{x \to a} k f(x) = k \cdot \lim_{x \to a} f(x)$.	
	(iii) $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$	
	(iv) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$, provided $\lim_{x \to a} g(x) \neq$	
	0.	
	(without proof) 1.4 Simple examples.	
2	Differentiation	15
	2.1 Definition : Derivative of a function.	13
	2.2 Derivative of some standard functions from first	

	1 / n x x 1 .	
	principle ($y = x^n$, $y = e^x$, $y = a^x$. $y = c$, where c is a	
	constant function.	
	2.3 Rules of Differentiation : Sum, Difference,	
	Product and Quotient of two functions.	
	2.3.1 Simple examples.	
	2.4 Second order derivative and examples.	
3	Integration	15
	3.1 Integration - An antiderivative process.	
	3.2 Standard Integrals.	
	3.3 Algebra of integrals: If $f(x)$ and $g(x)$ are two	
	integrable functions and k is any constant, then	
	(i) $\int k \cdot f(x) dx = k \cdot \int f(x) dx$.	
	(ii) $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int f(x) dx.$	
	3.3 Methods of integration : (i) Substitution method	
	(ii) Integration by parts.	
	3.3.1 Examples.	
	3.4 Definite integrals and their properties, examples.	
4	Application of Calculus in Business	15
	4.1 Maxima and minima, Case of one variable	
	involving second order derivative.	
	4.2 Cost function, Average cost, Marginal cost,	
	Revenue function, Profit function, Elasticity of	
	demand.	
	4.3 Consumer's surplus and producer's surplus.	

- 4.4 Examples based on (4.1), (4.2) and (4.3)
- *** (1) Non programmable calculator is allowed.
 - (2) For limit, derivative and integration trigonometric functions should be omitted.

Reference Books

- 1) **Business Mathematics**, Venna G. R., New Age International (P) Limited Publishers, New Delhi.
- 2) **Elements of Calculus**, Bhagvat and Pawate.
- 3) Business Mathematics, . Kumbhojkar G. V.
- 4) **Business Mathematics**, Soni R. S.
- 5) Business Mathematics, Kapoor V. K., Sancheti D. C.
- 6) **Differential Calculus** Shantinarayan
- 7) **Interal Calculus** Shantinarayan
- 8) **Business Mathematics** Agarwal B. M.
- 9) **Business Mathematics**, B.Com. Part I Published by Shivaji University, Kolhapur.

Equivalence in accordance with titles and contents of paper (For CBCS pattern – Revised Syllabus)

Sr. No.	Title of old paper	Title of New paper
1.	Business Mathematics Paper- I (Sem I)	Business Mathematics Paper- I (Sem I) (Algebra And Commercial Arithmetic)
2.	Business Mathematics Paper- II (Sem II)	Business Mathematics Paper- II (Sem II) (Calculus)